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The role of trees and forests as a critical component of the biosphere and critical zone, and of the Earth system
more generally, is widely appreciated. Less known and acknowledged are the geomorphological functions of
tree roots, although their importance has beenwidely referred to in soil studies, paleopedology, and paleobotany.
Tree roots and their impact onweathering processes and soil productionwere incorporated in theDevonian plant
hypothesis and tree root casts served as a key evidence of recognition of past soils in geology, sedimentology, and
paleopedology. However, knowledge of biomechanical and biochemical weathering induced by vascular plant
roots (mainly trees) has been rarely utilized in geomorphic studies. Biogeomorphic and pedologic studies in re-
cent decades have highlighted the importance of tree uprooting, in which roots play a primary role, in soil devel-
opment, regolith disturbance and bedrock mining. Other important functions of roots were also recognized, e.g.,
soil displacement by growing roots, infilling of stump holes and root cavities, root groove development, direct
and indirect effects taking place in the rhizosphere and mycorrhizosphere (mainly biochemical weathering of
minerals, support bymicrobial communities and symbiotic fungi), and changes in porosity, permeability, and hy-
drology of soils in the root zone. However, further studies are urgently needed becausemany aspects of biochem-
ical and biomechanical weathering are not well understood. This is especially true with respect to taxa-specific
impacts. Variations in root architectures, edaphic settings, ecological relationships, and geographic ranges result
in substantially different biogeomorphic impacts of different tree species. Additionally, the same species in differ-
ent environmental settings may have different effects.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Trees interact with their environment in complex ways, and this
phenomenon has been a subject of interest for more than a century.
While much of this work was motivated by interests in silviculture, ag-
riculture, and forest ecology, we focus here on Earth science perspec-
tives. As early as the late 19th century, the attention of forest soil
scientists and geologists was focused on their most hidden part—tree
roots. It was hypothesized that roots “(…) act substantially like subsoil
plows” (Shaler, 1892; p. 271). After a century of research, Earth scientists
concluded, for instance, that “root growth and animal burrowing disrupt
bedrock that is weathered but structurally intact, creating a loose material
free to move downslope.” (Dietrich and Perron, 2006; p. 412). Both state-
ments are important and address the same issue but from different
points of view: 1) soil or regolith and 2) hillslope evolution. Soil geo-
morphology and biogeomorphology made an attempt to combine
these points of view while focusing on scale differences of phenomena
involved in the process of soil/regolith and landscape evolution. For in-
stance, soil mixing and various forms of disrupted horizonation are
common features observed in soils, described for instance in the Charles
Darwin's last, “worm” book (Darwin, 1881; Johnson and Schaetzl, 2015)
and early forest soil reports (e.g. Lutz and Griswold, 1939). From the
hillslope perspective, disturbances induced by trees through their root
systems often contribute to downslope movement of weathering prod-
ucts and soil material and thus act as factors of hillslope
morphodynamics. These are common issues in soil and geomorphic
studies but they are frequently omitted in biological analysis
(Pregitzer, 2008; Hodge and Berta, 2009).

In this context, we ask whether the present state of geomorphic
knowledge allows us to formulate any clear statement about
weathering induced by growing tree roots. Yatsu's (1988) treatise on
weathering doubted the process is possible at all (see also Pawlik,
2013). This paper seeks to identify the effects of tree roots on rock
weathering and assesses their general importance at the global scale.
If the process of the physical and chemical weathering induced by tree
roots is significant, it should have far-reaching consequences for geo-
morphic systems (e.g. modulating sediment flux and balance). Because
interactions between biotic and abiotic environmental factors are in-
creasingly incorporated in geologic and geomorphic studies, the answer
to the abovementioned question should be a valuable contribution to
such disciplines as biogeomorphology (Viles, 1988; Viles et al., 2008;
Corenblit et al., 2011), ecogeomorphology (Hupp and Osterkamp,
2013), geoecology (Trofimov and Kurilenko, 2015), and geobiology
(Brantley et al., 2011).

Additionally, past views on trees and their role in environmental
evolution and functioning are highly contrasting and can be a source
of unclearmessages (e.g. Yatsu, 1988). First, we have to distinguish a va-
riety of disciplines that study or incorporate into their own analysis
knowledge on the roles, functioning and physical, chemical and biolog-
ical effects of roots. Equally important is the scale of analyses and the
level of generalization of the key functions of tree roots.

Geomorphologists and engineers have generally viewed trees and
their root systems as a factor of hillslope and river bank stabilization,
with retarding effects on erosion and mass wasting processes
(e.g., Gilbert, 1880; Jahn, 1989; O'Loughlin, 2005; Steinacher et al.,
2009; Buma and Johnson, 2015). However, if we take into account
another biomechanical process—tree uprooting—the problem becomes
even more complex (Schaetzl et al., 1989a, 1989b; Phillips et al., 2015;
Šamonil et al., 2010; Finke et al., 2013; Pawlik, 2013; Pawlik et al.,
2013, 2016). Recently, some authors point to a dualistic function of
trees after taking into account their long-lasting effect on soils during
their undisturbed growing and sudden biotransport of material and dis-
ruption of regolith during uprooting (Almond et al., 2008; Hughes et al.,
2009). The geomorphic efficacy of uprooting is closely related to root
properties, and this factor has been raised to the rank of a phenomenon
modulating the evolution of landscapes (Gabet and Mudd, 2010;
Roering et al., 2010). Uprooting, an example of proisotropic
pedoturbation, can cause soil transport, biomechanical weathering,
and both upbuilding or reduction of soil thickness and is considered a
predominantly regressive pathway of soil development (Johnson and
Watson-Stegner, 1987; Johnson et al., 1987; Amundson et al., 2015).

In this paper, we try to focus on a fundamental function of
trees—rock weathering by expanding tree root systems (Johnson,
1993). We will review literature about tree roots acting as a
biogeomorphological force driving processes within the boundary
zone between regolith and bedrock, a part of the Critical Zone
(Amundson et al., 2007; Lin, 2010; Brantley et al., 2011). Additionally,
we will explore tree roots/bedrock/regolith interactions and their mu-
tual dependences.
2. Early views on the role of plants in geomorphic and soil processes

In the history of geomorphological research, trees have been ana-
lyzed in a variety of environmental contexts and spatio-temporal scales.
Traditionally, forest communities are considered as one of the vascular
plant formations that effectively minimize erosional processes and sup-
port hillslope and river bank stability over short- and long-time periods.
They also effectively contribute to soil strength, reducing probability of
shallow landsliding (O'Loughlin, 2005; Marston, 2010).

However, from the beginning of geological and geomorphological
studies, researchers pointed tomore than one critical function of plants.
For instance, Gilbert (1880, p. 95) observed that “Plants often pry apart
rocks by the growth of their roots (…)” but also that “(…) the general ef-
fect of vegetation is to retard erosion (…)” (p. 99). This observation was
supported by Merrill (1906), who agreed that “both plants and animals
aid to some extent in the work of rock disintegration” (p. 180). The author
noticed that “roots, (…), serve to enlarge the rifts (…)” and this process
facilitates access of rain water, leading to farther rock deterioration
(p. 180).

Proof of early attention to apparent effects of roots on bedrock
weathering can be found in impressive descriptions and drawings pre-
senting tree roots physically disrupting places they occupied. For in-
stance, Stephens (1843) described an elm tree growing on an ancient
wall where “(…) fibres crept into cracks and crevices, and became shoots
and branches, which, as the trunk rose, in struggling to rise with it, unset-
tled and overturned the wall, and still grew, carrying up large stones fast
locked in their embraces (…)” (p. 392–395) (Fig. 1).

A far more detailed early theory of soil production by root activity
was given by geologistNathaniel Shaler (1892) in his influential “The or-
igin and nature of soils.” He found the following root–rock interactions
(Fig. 2):



Fig. 1. Root deterioration of an ancient wall, the Malayan ruins at Kabah, Mexico
(Stephens, 1843; p. 393; see also Viles, 1988; p. 337).
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1. during their growth, roots pushes the soil outward andmay “exercise
a powerful wedging action”;

2. many generations of large roots of forest trees and the movement
during their growthmay “grind the particles of soil against each other”;

3. roots penetrate crevices and grow in them, disrupting the rockmass;
4. “small roots penetrate fissures and break up the decayed portion of the

mass” and this process promotes chemical weathering;
5. initial roots “break up the rock and open its structure,” leaving easier

access for the next roots.

A similar view of root growth processes and influence on soils was
recognized by Shaler's student, William Morris Davis, who hypothe-
sized that trees can contribute to soil creep (Davis, 1899; see also King
and Schumm, 1980) (Fig. 3). The idea was reiterated recently, but
based on the additional assumption that growing tree roots push the
soil upward, so that after root decay, the mass is displaced downslope
(Gabet et al., 2003; Field and Little, 2009). Together with other biologi-
cally induced diffusive hillslope processes (e.g. tree uprooting, animal
burrowing), it has been included in a concept of biogenic creep (Lehre,
1987; Wilkinson et al., 2009) and biological saltation (Birot, 1966). Hy-
pothetically, due to multiple tree-uprooting events (repeated soil turn-
over), soil transport (creep-like soil material movement) might have
appeared even on completely flat surfaces (!) (see Gabet et al., 2003).
Additionally, the direction of tree uprooting events in relation to topog-
raphy can even cause upslope soil movement (Šamonil et al., 2016).
3. Biology of tree roots

3.1. Functions of tree roots

Considering biomechanical effects of tree roots and their geomor-
phic significance, we first have to see them from biological perspective.
“Trees, like all plants growing in the wild, must solve a host of problems
using their root systems” (Pregitzer, 2008), and this fundamental issue
has important consequences for soil and regolith properties. Trees be-
long to phanerophyt plant life-form (Raunkiær, 1934) and thus their
bodies are adapted to face extreme meteorological conditions. They
need to withstand periods of drought as well as very low temperatures,
competition with other tree species, injuries from animals, other falling
trees, lightning, etc. There is no doubt root systems play a major role in
overcoming these stress factors and/or recovery after a disturbance.
Along with this general function, root systems (Kramer and Boyer,
1995; Little and Field, 2003; Pregitzer, 2008; Hodge and Berta, 2009):

1. anchor trees to a substrate (although roots of many tree species do
not develop stabilizing reaction wood and thick walls of latewood
unless exposed to light, Fayle, 1976; Schweingruber, 2007);

2. store nonstructural carbohydrates (simple sugars, starch, and
fructans) and use them as a source of the energy;

3. transport the soil solution both up and down (water solution can
move in any direction in the plant–soil continuum through a process
called hydraulic redistribution, which means the passive conduits of
roots and stems move water towards the lowest water potential,
Nadezhdina et al., 2010), and transport water and other compounds;

4. fix atmospheric nitrogen, together with their associated symbiotic
bacteria and fungi (nitrogen-fixing and rhizobial bacteria), an essen-
tial nutrient required for growth.

Thanks to the firm anchorage, trees can contribute functions 2–4
(above). And this “system” makes “plants geochemical pumps that re-
move bio-essential elements from the soil solution…” (Anderson et al.,
2007; p. 327). Nutrients and other elements are protected against faster
removal from the soil and regolith in humid regions by their pumping
and cycling in active root zone (Lucas, 2001), which in some cases can
even cause changes in mineral composition of soil (Lucas et al., 1993).
If deepening of gradually leached soil horizons, such as eluvial podzolic
horizons, cross the depth of active tree roots, the following pedogenesis
can hardly be reversible (e.g. Šamonil et al., 2016). Although upwards
direction of solution is prevailing in plant–soil continuum, all directions
of solutionmovement are possible (Nadezhdina et al., 2010). This func-
tion is genetically controlled, but it is also modulated by water and nu-
trient availability, as well as substrate and soil properties. Simply
speaking: external morphology of roots is related to their environment
(Zwieniecki and Newton, 1995).

3.2. Types of tree roots and root system dynamics

Roots aremulticellular organs characterized by gravitropic response,
endogenous branching root hairs, and a protective root cap (Kenrick
and Strullu-Derrien, 2014). Due to gravitropism (geotropism), roots
grow downward and anchor to the soil, regolith, and/or bedrock, pro-
viding stability essential for further growth. Some trees develop quickly
growing taproots that may reach depths of 10–30 m (Stone and Kalisz,
1991). When stable, plants through root systems can further control
secular soil production and processes. Anchoring to a substrate is a do-
main of woody tree roots (Fig. 4). Non-woody roots are short-lived (up
to a year) and are responsible for nutrient and water uptake. In a
broader context, three main categories of roots can be distinguished
(Hodge and Berta, 2009):

1. primary roots which can be a starting point for a single-axis root sys-
tem or taproot system, with dominant vertical growth due to
gravitropism (Fig. 4);

Image of Fig. 1


Fig. 2. Nathaniel Shaler's view on soil properties influenced by tree roots (Shaler, 1892; p. 270).
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2. nodal (or adventitious) roots differentiate from organs other than
roots (e.g. rhizomes, stems, etc., for instance, the Banyan tree Ficus
benghalensiswith 3300 aerial roots, Kolkata, India);

3. lateral roots which originate from the branching of a parent axis.

Root hairs play a key role in nutrient uptake because they increase
the total root surface area and shorten the distance that ions and
water must cover to reach root surfaces. Transport is facilitated by the
fact that root hairs can penetrate small pores (N5–20 μm), not available
Fig. 3.One of the possible processes involved in soil creep as explained byWilliamMorris Davis
roots. A) During growth, soil is forced downhill. B) During decay, soil from uphill moves into the ca
for roots, and also because they develop in a great number from 20 to
500 cm−2 of root surface on roots of trees (Kramer and Boyer, 1995).

Traditional views of Earth scientists on root system dynamics were
mainly through a prism of observed microscale morphological changes,
past or present, for instance, forms of root plates of fallen trees, tree
throw mounds, stone rings in places of completely decomposed tree
stumps (Phillips and Marion, 2006), and, when fossilized, “tree root
casts” (Mossa and Schumacher, 1993). However, this evidence was
also frequently neglected or, if documented, wrongly interpreted as,
(King and Schumm, 1980). Original figure's caption: “Soil creep produced by growth of tree
vity (from a blackboard sketch).”

Image of Fig. 2
Image of Fig. 3


Fig. 4.Main types of tree roots.
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for example, an effect of karst or frost processes (e.g. Embleton-
Hamann, 2004). Obviously, the study of the root system development
and its consequences on the above and belowground ecosystems is a
natural subject of analysis for biologists and this knowledge is a prereq-
uisite for understanding trees influence on geomorphic systems. Biolo-
gists refer to root system dynamics as changes in the main properties
of the root system architecture (shape and structure) but also anatom-
ical differentiation of roots on the level of individual cells. Hence root
system dynamics may include (Hodge and Berta, 2009):

1. development of new main axes (primary or adventitious);
2. branching—the development of lateral and adventitious roots that

represent adaptive response for resource availability or the need to
secure anchorage (Atkinson et al., 2014);

3. axial growth—involves two properties of a root, its length and trajec-
tory, which contribute to the dynamic colonization of new soil zones.
It occurs from the distal end (root tip) by cell division resulting in
root elongation. The root axial growth and its trajectory is forced by
a sort of tropism (e.g. gravitropism, hydrotropism, P tropisms, etc.),
and it is believed that the root cap plays amajor role in this phenom-
enon by sensing different stimulants. Another interesting property of
axial growth is return of root tips to their original direction of growth
after passing around obstacles, a behavior known as exotropy
(Kramer and Boyer, 1995).

4. radial growth—can be responsible for increased axial transport prop-
erties (particularly axial hydraulic conductivity), increased mechan-
ical strength and anchorage, storage capacity and protection against
predation, drought, or pathogens.

5. root senescence and decay—root mortality and turnover are impor-
tant processes in the development and function of root systems, par-
ticularly in perennial plants. Replacement of decaying roots by more
efficient new ones (i.e. root turnover)may account for c. 30% of glob-
al terrestrial net primary production (Kramer and Boyer, 1995;
Jackson et al., 1997; Hodge and Berta, 2009).

Root system dynamics is also greatly influenced by channels left by
decayed old roots (Stone and Kalisz, 1991; Phillips and Marion, 2005).
Using these channels, new roots enter the soil which physical proper-
ties, mainly bulk density and water permeability, due to the past
development of tree roots, are significantly improved. Another positive
feedback can be created by earthworm activity. Earthworms form chan-
nels that provide pathways for root growth, and, as in the case of root
channels, they improve aeration and increase the infiltration of water.
These two positive feedbacks contradict the opinion that tree roots
can be uniformly distributed (Kramer and Boyer, 1995).

External processes which act upon a tree can also stimulate changes
in root anatomy and structure, or influence development of new roots.
Geomorphic processes play a special role here and two such cases in-
clude 1) burial of tree stems by, for instance, flood or aeolian sediments
or debris flow material (Sigafoos, 1964; Alestalo, 1971; Strunk, 1997),
and 2) exposure of tree roots by e.g. erosion or shallow landsliding
(Gärtner, 2007). In thefirst instance, adventitious roots develop directly
from buried tree stem. They can appear in several sequences (layers),
one above another, indicating subsequent burial episodes. When the
burial is sufficiently deep, the original root systems die, and their func-
tions are replaced by secondary adventitious roots (Alestalo, 1971,
p. 45). Because development of adventitious roots after burial can be
immediate (in spruces) or delayed up to 5 years (other species), their
identification is awell-established dating tool in dendrogeomorphology
(Gärtner and Heinrich, 2013; Stoffel et al., 2013). Exposed tree roots are
also frequently used as dating technique because during gradual expo-
sition, anatomical changes occur and are similar to those recorded in
stems or branches and they are easily detected (Hitz et al., 2008;
Stoffel et al., 2013; Wrońska-Wałach, 2014). In both cases, roots and/
or their structural and anatomical changes serve as very precise
geoindicators (Schroder, 2010).

3.3. Rhizosphere—A niche of high microbial activity

When analyzing root system dynamics, we cannot omit the rhizo-
sphere (from Greek “rhizo” meaning “root” and Greek “sphaira”; the
term defined by Lorenz Hiltner in 1904 (Hartmann et al., 2008)), the
space, a niche of high microbial activity, cylindrical in shape, around ac-
tively growing roots which contain the volume of soil that is influenced
by root activity (Yatsu, 1988; Gobran et al., 1998; Little et al., 2004;
Gregory, 2006; Amundson et al., 2007; Hodge and Berta, 2009;
Lambers et al., 2009; Sokolova, 2011, 2015; McNear, 2013). The

Image of Fig. 4
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rhizosphere supports microorganisms' growth (e.g. 109 bacteria popu-
lation in 1 g of rhizosphere soil; Yatsu (1988)) and thus stimulates bio-
chemical processes in the root zone (Kramer and Boyer, 1995; Little and
Field, 2003). This narrow space is thought to extend up to N10–20 mm
from the root surface and it is generally limited to interactions from
1) millimeter scale of microbial populations and immobile nutrients to
2) tens of millimeter scale for volatile compounds and gases released
from roots (Gregory, 2006, 2010; Sokolova, 2011).

Rhizospheric processes include (Gregory, 2006):

1. rhizodeposition—C compounds released from living roots into the
soil (Lambers et al., 2009), e.g., exudation of low-molecular-weight
(LMW)organic acids and enzymeswhich influence the release of nu-
trients; and release of gases, e.g., CO2 (Gobran et al., 1998; see Yatsu,
1988, p. 368, for a complete list or organic compounds in root
exudates);

2. enhanced chemical weathering by LMW organic acids.

Probably the first exhaustive description of biochemical interactions
taking place in the rhizosphere in an Earth science textbook was by
Yatsu (1988). Before, as he noted, geology and geomorphology books
rarely referred to the importance of rhizospheric processes in
weathering. Since Yatsu (1988) scientists have described in detail rhizo-
sphere effects on the mineral stability and alteration, soil solution com-
position and nutrients availability, soil formation processes
(pedogenesis), and the biogeochemistry of elements that could be ei-
ther beneficial or toxic to themselves or other soil biota (Hinsinger
et al., 2006; Collignon et al., 2011; McGahan et al., 2014; Rahimzadeh
et al., 2015). Lambers et al. (2009) considered rhizosphere processes
in the long run of evolutionary perspective to be a central to biogeo-
chemical cycles, soil formation, and Earth history.

3.4. Mycorrhizosphere and mycorrhizal “rock-eating” fungi

Mycorrhiza is a sort of symbiosis between plant roots and fungi (also
“fungus-root,” from Greek “myco”meaning “fungi” and “Rhiza”meaning
“root” (Alizadeh, 2011)) and is based on a network of fungal hyphae
penetrating the surrounding soil, regolith, and bedrock but also extend-
ing into the host plant in a form growing into intercellular spaces
(ectomycorrhizal) or directly entering to the root cortex and cells
(endomycorrhiza) (Bornyasz et al., 2005; Lehto and Zwiazek, 2011;
McNear, 2013).

Mycorrhizal fungi play additional roles in nutrient and water acqui-
sition, a mechanism present in almost all terrestrial ecosystems
(Jongmans et al., 1997; Witty et al., 2003; Hodge and Berta, 2009;
Lambers et al., 2009; Van der Heijden et al., 2015). Sometimes mycor-
rhizas are associated with chemical weathering of primary minerals
such as feldspars and hornblendes (Jongmans et al., 1997) and are
even considered as the most important soil fungi type in terms of min-
eral weathering and dissolution of insolublemetal compounds (Burford
et al., 2003). A similar process has been postulated byVanBreemen et al.
(2000a, 2000b)who concluded that themycorrhizal “rock-eating” fungi
may contribute to the formation of bleached E horizons of Albic Podzols
(WRB, 2014) through local dissolution of Al silicates by strongly
complexing LMW organic acids at their hyphal tips causing creation of
micropores in soils.

Mycorrhizal fungi develop at least three ways of direct co-existence
with plant roots; with the most important synergetic effects occurring
within the rhizosphere (Sokolova, 2011). Soil fungi can live 1) inside
the cortex (the outermost layer of a root), 2) on the surface of the
root, or 3) around the epidermal cells, i.e., a single-layer of cells covering
roots. However, an additional mode of, e.g., nitrate and phosphate ac-
quisition by mycorrhizas, is developed through the hyphae of these
fungi that grow out from the roots into the soil (Van der Heijden et al.,
2015).
Four main types of mycorrhizal fungi can be distinguished:
1) arbuscular mycorrhiza (AM), 2) ectomycorrhizal (EM), 3) orchid,
and 4) ericoid mycorrhiza (Table 1).

The ectomycorrhizal (EM) hyphae living in a symbiosis with the
roots of trees (e.g. Quercus or Pinus) can penetrate weathered granitic
bedrock and stimulate microcline and biotite weathering (Van
Breemen et al., 2000a, 2000b). In addition to increasing weathering,
EM hyphae contribute to transport of Al in soils which can intensify pe-
dogenesis, especially podzolisation (van Scholl et al., 2008). As a result,
EM could support formation of so called “basket” or “egg cup” podzols
under tree trunks (Bloomfield, 1953; Schaetzl, 1990), but EM participa-
tion on this process has not been proved so far. The so-called
ectomycorrhizosphere acts as an effective medium for water transpor-
tation to themain roots (Witty et al., 2003; Sokolova, 2011). In this con-
text, it is important tomention that some plants with thick roots rely on
mycorrhizal fungi to a much greater extent than plants with fine roots
(Van der Heijden et al., 2015). For instance, in boreal forests, even if
composed of only a few tree species, the diversity of EM fungi can be
high and reach several hundreds of fungal species coexisting in a single
forest. Mycorrhizas are frequently interconnected in space and can be
shared between neighboring trees and plant species (e.g., Ingleby
et al., 2007). As many as 6000 plant species form associations with EM
fungi (mainly trees), but this number is greatly overwhelmed when
arbuscular mycorrhiza (AM) is concerned. AM are hosted by c.
200,000 plant species (Van der Heijden et al., 2015); however the direct
weathering impact on minerals is far less known and sometimes
doubted when compared to EM fungi (Taylor et al., 2009) (Table 1).
However, one exception is AM in symbiosis with Thuja occidentalis,
which can result in surface etch pitting of feldspars. This effect is far
greater than AM and EM in the case of other trees. Here, it is supposed
that a large amount of LMW organic acids are taken from its litter
(Taylor et al., 2009).

4. Biological weathering

Biological weathering has a long history of study and its general
meaning and functions are widely recognized. Most commonly it is un-
derstood as a set of processes bywhich biota (microorganisms, animals,
and higher plants) and their decomposition products alter chemically or
physically parent rock or regolith (Yatsu, 1988; p. 285; Burford et al.,
2003; p. 1128; Field and Little, 2009; Brantley et al., 2011; p. 4). It is,
however, also difficult to distinguish between the effects of purely phys-
ical, chemical, and biological weathering (Dixon, 2004) because they
frequently act synergistically.

Full evaluation of weathering effects induced by trees requires a dis-
tinction between biochemical (bioweathering) and biomechanical
weathering, and both must be considered on several levels of spatio-
temporal scalesmotivated by 1) ecosystemparameters (e.g. climate, ge-
ology), 2) disturbance regime of a site, 3) genetically and environmen-
tally stimulated properties of trees (e.g. longevity, root system type),
4) rhizospheric processes, and 5) type of mycorrhizal association (sym-
biosis). These “natural frames” of biological weathering caused by trees
and tree roots starts with tree germination and continue as direct and
indirect effects through the entire life span of the tree. Indirect effects
are also detectable long after the tree death and can stimulate further
changes in soils and regolith (root channels, infilled tree stumps, pit-
mound relief, etc.).

4.1. Biomechanical weathering of bedrock

Biomechanics is a description of biological systems such as humans,
animals, plants, organs, and cells frommechanistic point of view (Hatze,
1974). In geomorphology and soil science terms such as “biomechanical
processes,” “biomechanical effects,” and “biomechanical weathering”
are already in use (Johnson, 1993; Phillips and Marion, 2006; Phillips
et al., 2008a, 2008b; Šamonil et al., 2010; Pawlik, 2013), and they



Table 1
Mycorrhizal fungi types (Landeweert et al., 2001; Brundrett, 2002; Taylor et al., 2009; Van der Heijden et al., 2015).

Name Abbreviation

Estimated
appearance
in
associations
with all
plant
species

Number of plant
species
forming associations
with
mycorrhizal fungi

Geological
history
(first
appearance) Chemical weathering effects

Indirect effects on weathering
Arbuscular mycorrhiza
(vasicular-arbuscular

mycorrhizas)

AM (VAM) 74–80% 200,000 450–460
million

years ago

1. Secretion of organic acids or chelators needed for mineral dissolution has
not been proven.

2. Indirect effects through glomalin (the compound which increases soil
quality, retention of water, and by promoting soil particle aggregation

decrease soil erosion)

Direct effects on weathering
Ectomycorrhizal EM (ECM) 2–3% 6000 (e.g. pines,

beeches, oaks, birches
and alders)

135–220
million

years ago

1. LMW exudates; the most important for weathering are oxalates and
citrates.

2. EMs bacteria produce siderophores; strong Fe chelator.

Not considered in this paper
Orchid mycorrhiza – 9% 20,000–35,000 ? –
Ericoid mycorrhiza – 1% 3900 80 million

years ago
–
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normally refer to the ability of living organisms to physically change
soils, regolith, and bedrock. Biomechanical processes are commonly as-
sociated with soil mixing and bioturbations (including faunalturbations
and floralturbations), rock fracturing andwedging, and sometimeswith
biotransport. They are normally analyzed at the scale of pedon or bigger,
but in biogeomorphology and zoogeomorphology, the scale is largely
dependent on the size of the engineering organism itself and its abun-
dance (e.g. individual tree, ants, termites, pocket gophers, etc.).

Biomechanical interactions between tree roots and bedrock are
more obvious when growing roots encounter gaps in or weaker portion
of the rock: e.g., elongated fissures, chemically altered joints, etc. When
weathered, the bedrock zone can be entered through fractures as quick-
ly as 2–3 years; the time documented for P. ponderosa on b1mdeep soil
(Witty et al., 2003; p. 398). However, does the story continue? Are
growing and expanding tree roots opening joints and cracks in fresh
or weakly weathered bedrock? If yes, in what conditions; under the
soil cover, within joints in rock outcrops?

Here we refer specifically to the widening of joints or rock partings
by the radial pressure of root growth, resulting in the splitting of rock
masses. Thismechanism is far from obvious, mainly due to themonitor-
ing constraints, and sometimes doubted (Yatsu, 1988). Even so, several
observations have been already made which pointed to such possibility
(Little and Field, 2003), and tree roots can frequently be observed grow-
ing in bedrock joints that appear to have been widened. For instance,
Little and Field (2003) speculated on bedrock breaking along small
cracks caused by growing plant roots. Root and trunk growth is clearly
capable of displacing even large rock fragments where the roots can
grow under or along the rock (e.g., Phillips and Marion, 2006), but the
tensile strength of most unweathered rock greatly exceeds the radial
pressure than growing roots can achieve. Maximum radial pressures
of root growth range from 0.51 to 0.9 MPa (Bennie, 1991; Lambers
et al., 2008), while the tensile strength of crustal rocks ranges from 1
to 25 MPa (Yatsu, 1988; Selby, 1993). Pores in rocks are frequently too
small (b100 μm) for roots to enter (Zwieniecki and Newton, 1995). It
has been found that sometimes roots are concentrated as mats within
fractures (Witty et al., 2003). Larger (woody) roots, while growing in
rock fissures, adopt morphologically to such unfavorable conditions de-
veloping flattened cortex (Zwieniecki and Newton, 1995; Gregory,
2006).

Several observations exist which suggest that roots enhance rock
weathering, but that this is controlled by rock body properties, mainly
the existing network of joints, cracks, and fissures (Zwieniecki and
Newton, 1995; Little and Field, 2003; Phillips et al., 2008a; Phillips,
2016a). Additionally, the process of biomechanical reworking of discon-
tinuities in bedrock is not a standalone mechanism, and if it exists, is
largely accompanied by biochemical effects of rhizospheric and mycor-
rhizal processes (see Sections 3.3 and 3.4). However, both processes
have been rarely studied. Newly exposed rock surfaces can be quickly
(within a few years) covered by vegetation and, for instance, tree
roots, root hairs, and fungal hyphae preferably exploit open joints
(Phillips et al., 2008a). Similar opportunistic behavior is known for mi-
croorganisms and mycorrhizal fungi which penetrate (or create)
micro-spaces on and within mineral grains (crystals) (Burford et al.,
2003) through

1. penetration by fungal hyphae (along crystal planes);
2. burrowing and tunneling ofminerals in consequence of organic acids

and chelators impact produced by mycorrhizas, fungal hyphae, and
rhizospheric microbes.

Once roots have entered rock via a joint or crack, biochemical
weathering is enhanced bymoisture fluxes along the root, root respira-
tion, LMW acid production, and rhizosphere processes. Although root
growth pressure cannot break up intact, unweathered rock, via radial
growth roots tend to fill partings widened by biochemical weathering,
thus keeping moisture and rhizosphere processes in contact with the
rock.

One important contribution on biomechanical weathering comes
from botanists who studied limestone cliffs and documented numerous
cases of rock fragments detached from the cliff by expanding roots of
Taxus baccata (Jackson and Sheldon, 1949). Tree roots used discontinu-
ities and softer, more weathered, parts of limestone, and their action
contributed to the cliff recession. This may be the only example of a
study devoted to biomechanical weathering caused by tree roots. We
are not aware of other similar research, and undoubtedly, further inves-
tigation is needed on different types of bedrock and under impact of dif-
ferent tree species.

Tree throw dynamics briefly mentioned above are the most impor-
tant biomechanical processes in forest ecosystems. Approximately a
quarter or even a third of all trees are uprooted at the end of their life
cycle in temperate old-growth forests (Šamonil et al., 2013). Although
the role of tree uprooting in soil formation on the pedon scale was re-
peatedly extensively reviewed (Schaetzl et al., 1989a, 1989b; Ulanova,
2000; Šamonil et al., 2010; Pawlik, 2013), its effect on the landscape
scale as well as implications to biogeomorphology and long-term forest
ecosystemdynamics is still unclear.Where tree roots are in contactwith
the bedrock, uprooting can locally intensify weathering and deepening



149Ł Pawlik et al. / Earth-Science Reviews 159 (2016) 142–159
of soils by “mining” bedrock fragments (Phillips et al., 2008b, 2015;
Roering et al., 2010; Pawlik et al., 2013, 2016). Geophysical measure-
ment by ground-penetrating radar in beech-dominated old-growth for-
est in the Czech Republic supported this idea also on stand scale
(Šamonil et al. unpublished). Although soil mixing or soil profile inver-
sion (Schaetzl, 1986; Butler and Malanson, 1990; Šamonil et al., 2015)
by uprooting clearly locally resets pedogenesis on a pedon scale, long-
term soil development on landscape scale in areas occupied by tree
throws could be more advanced than in less disturbed areas because
of changing weathering and leaching rates in soils (Šamonil et al.,
2014, 2015).

4.2. Biochemical weathering

Biochemical weathering (bioweathering) is a biotically mediated
chemical weathering process of rocks and minerals (Burford et al.,
2003; Fei et al., 2014). It is believed that this type of weathering is
more important than mechanical degradation for several reasons. For
instance, microorganisms (e.g. bacteria, fungi) are widespread, can sur-
vive under the most extreme conditions (e.g. hot springs, cold deserts),
and are very opportunistic, inhabiting niches that are hardly available
for other organisms (rock cracks and fissures) (Burford et al., 2003). Ex-
amples of such organisms include endoliths, which colonize micro-
discontinuities in rocks (chasmoendoliths and cryptoendoliths) and
even bore into the interior of rocks (euendoliths) (Friedmann, 1980;
Blackhurst et al., 2005). In far more hospitable conditions, under the
soil cover, the hyphae of fungi associated with tree roots penetrate soil
pores smaller than 5–20 μm, normally unavailable for root hairs
(Taylor et al., 2009). Hence, it is a very effective way by which plant
roots, relying on the fungal hyphae, expand the space available for bio-
chemical weathering.

Effects of biochemical weathering include changes in mineral crys-
tals microtopography by pitting and etching on their surfaces, and
even complete dissolution of mineral grains (Burford et al., 2003).
Many examples of pores, 3–10 μm in width, were found in feldspars
and hornblendes in podzol E soil horizons and granitic bedrock (under
Pinus sylvestris and Picea abies). It is believed that they were formed
by mycorrhizal or saprotrophic fungi (Jongmans et al., 1997).

Buurman and Jongmans (2002, 2005), for example, complemented
existing fulvate, proto-imogolite, and fulvatebicarbonate theories of
podzolization describing mobilization, transport, and precipitation of
organo–metallic–silicate complexes by biological activity of tree roots.
They found predominance of root-derived organic matter in some Pod-
zols and concluded that the root activity and decay can play a crucial
role in Podzol development, i.e., deepening of transition between eluvial
E and illuvial Bhs horizons. Significant amounts of root-derived organic
matter in Podzols was formerly observed by De Coninck (1980).
Skjemstad et al. (1992) highlighted effects of root exudates in podsoli-
zation rather than the effect of root decay. Podzolization seems to be
narrowly connected with microbial activity. According to Lundstrom
et al. (1995) and Buurman and Jongmans (2002, 2005), the removal of
metals by dissolved organic carbon in originating eluvial E horizon is
followed by microbial decay of formerly accumulated organic matter
no longer protected by Al and Fe complexes. Microbial activity can
drive gradual deepening of Podzols in time. Abrupt deepening of Pod-
zols in space on the finest spatial scale of decimeters or meters can be
linked to, apart from preferential water flow, decomposition of organic
material accumulated within tree throw pits or decomposition of
uprooted, sometimes buried trunks (Schaetzl et al., 1989a; Šamonil
et al., 2010, 2015).

Plants, their mycorrhizal fungi, and microbes living in the rhizo-
sphere are able to contribute to chemical weathering phenomena
through the following mechanisms (Taylor et al., 2009):

1. exudation of reactive species (e.g. H+) and LMW organic chelators
(e.g. oxalate, citrate, and malate, which are the strongest chelators
of trivalent metals such as Al3+ and Fe3+, Landeweert et al., 2001)
(also known as “rock-eating fungi,” Jongmans et al., 1997; Van
Breemen et al., 2000a, 2000b):

a. organic acids enhance chemical weathering of mainly mafic min-
erals (e.g. amphibole, pyroxene) (Drever, 1994);

b. mycorrhizal hyphae penetrate aluminosilicate minerals through
complex solution of organic acids;

c. carbon-rich exudates support large communities of rhizospheric
bacteria and fungi which actively accelerate weathering of min-
erals (Landeweert et al., 2001);

2. increased pCO2 (partial CO2) of soil solution due to plant respiration
(resulting in decreased pH);

3. organic matter decomposition products increase concentration of
high molecular weight (HMW) organic acids and LMW organic che-
lators in the soil solution;

4. evapotranspiration,which stirs “thewater cycle engine” bearing base
cations and other nutrients to plants;

5. stabilization of the soil body which allows undisturbed activity of
roots and their mycorrhizas.

Organic acids are released through root tips; however,weathering of
soil minerals is also enhanced by fungi hyphae (mycelium)which grow
from the root tips, enclose mineral particles, and penetrate mineral in-
terlayer spaces (Landeweert et al., 2001). EM fungi hyphae develop ad-
ditional organs, called rhizomorphs, which elongate root tips into the
soil by asmuch as 10 cm (Taylor et al., 2009). Also, EM act as biosensors
and they can distinguish different grain sizes and mineralogies (Leake
et al., 2008) suggesting EM ability for selective rock weathering. All
these properties make mycorrhizal fungi associated with tree roots a
very effective system of chemical alteration of rocks and minerals.

4.2.1. Indirect effects on biochemical weathering
Direct effects of root and rhizospheres, and the associated microbial

communities on weathering, are often important, such as production of
organic acids, chelation, and activities of endolithic microbes. Many im-
portant direct effects are described above, associated with biochemical
weathering in the root zone. However, indirect effects on weathering
may also be important.

Trees can affect soils, regolith, and bedrock through their indirect
input of water, organic matter, and bioconstructions in places presently
or previously occupied by roots. After tree roots find their way through
substrate into the fractured bedrock, they commence to play a role of
transmission pathways for moisture, nutrients, microorganisms, and
heat. This is especially important in very shallow and immature soils
where tree roots penetrate only slightly weathered bedrock
(Schwinning, 2013). Because of these factors, roots are a key agent of
further soil development.

Bioconstructions include rhizoliths, which are structures formed
around or in places occupied by the root when root tissue is substituted
by precipitated mineral compounds, e.g., calcium (Goudie, 1996; Lipar
and Webb, 2015). Rhizoliths include root moulds (tubular voids),
casts (filled root moulds), tubules (cemented cylinders around root
moulds), rhizocretions (mineral accumulation around roots, Kindle,
1925), and root petrifactions (when plant tissue is replaced by mineral
matter). Recognition of rhizoliths, casts, tubules, and root petrifactions
including also biogenic calcretes are an important tool in paleobotanical
and paleopedological studies, for example, in stratigraphic correlations
and interpretations (see Retallack, 2001; Stein et al., 2012; Brlek et al.,
2014).

Roots influence soil porosity and permeability by pushing the soil
vertically and horizontally as they develop and find their way through
the soil and explore new nutrient andwater resources, which can result
in so called root mounds on surface (Phillips and Marion, 2006;
Hoffman and Anderson, 2014). Agitation of plants, particularly trees,
during the storms, which promotes root movement in soils can be



Fig. 5. A hypothetical imprint left in soil by growing and decayed plant roots which influence permeability and hydrological connectivity with lower soil horizons and bedrock (the figure
based on Gaiser, 1952, p. 63; modified).
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seen as another agent significantly influencing physical soil properties
(Gabet et al., 2003). When roots decay, they leave root channels that
are then used as pathways for free water movement (Gaiser, 1952)
(Fig. 5). Some influences caused by roots of various size can be similar
to effects made by burrowing animals in terms of soil founalturbation
and transport, and water and nutrient regimes. It has been suggested
that vertical channels might be interconnected by lateral channels
forming far more complex systems of water transmittance in soil
(Gaiser, 1952). It is evident in very porous immature soils developed
in karst areas (Martin, 2006; Phillips, 2016a). Such conditions inevitably
influence the presence of rhizospheres (Schwinning, 2013).

Root grooves areweathering features directly associatedwith coarse
roots. Grooves develop along living roots in contact with rock due to
chemical weathering associated with moisture moving along the root,
respiration, and transpiration by the root, organic acids, and associated
effects of microbes (Wall and Wilford, 1966; Sweeting, 1973; Bull and
Laverty, 1982; Trudgill, 1985; Taborosi, 2002). Such features may be
an initial point of self-reinforcing mechanisms of further rock dissolu-
tion, especially in carbonate rocks, where these features are most com-
mon (Phillips, 2016a). Existing root grooves act as pathways of rapid
rain water percolation. These spaces are a subject of enlargement and
can be repeatedly occupied by future generations of roots.

4.3. Other effects: Mass displacement, stump infilling

Tree uprooting and the resulting pit-mound microtopography, and
effects on soil hydrology, have traditionally been considered the main
biomechanical effects of trees on soil. However, at least two other effects
are significant: mass displacement by trunk and root growth, and
infilling of cavities associated with decomposed or burnt stumps. Al-
though tree uprooting was repeatedly found to be the most important
biomechanical process driven by trees in temperate forests (in terms
of volume of moved soil material), infilling of decomposed tree stumps
is even more frequent.

Root biomass is generally proportional to above-ground biomass, so
large trees comprise a significant amount of soil mass and volume, par-
ticularly in the upper soil layers. The ability of radial pressure of wood
growth to displace mass is indicated by the displacement of rock frag-
ments up to boulder size (and, in urban settings, pavements). Thus,
even where no uprooting occurs, trees perform a significant amount
of bioturbation (Lutz and Griswold, 1939; Lutz, 1958; Phillips and
Marion, 2006; Wilkinson et al., 2009; Hoffman and Anderson, 2014).

Trees that die (or are cut) without uprooting leave surface depres-
sions when the stumps eventually decompose or burn. In beech-
dominated old-growth forest between 60 and 80% of trees are broken
at the end of life cycle (Šamonil et al., 2013). The depressions may fill
with material slumping or eroding from the surrounding soil, sedi-
ment-transported downslope, organic litter, or a combination. This
stump infilling process has significant impacts on soil spatial variability
and hillslope mass fluxes but has been studied in detail in only a few
cases (Phillips and Marion, 2006; Shouse and Phillips, accepted for
publication).

5. Tree roots as ecosystem engineering

Ecosystem engineering reflects effects of organisms on the abiotic
environment where organisms have disproportionate impacts relative
to their numbers or size, and where the effects influence habitat, re-
source availability, or mass and energy fluxes (Jones et al., 1994, 1997;
Jones, 2012). When ecosystem engineering organisms influence selec-
tive pressure, it constitutes niche construction (Odling-Smee et al.,
2003; Matthews et al., 2014). Ecosystem engineering and niche con-
struction indicate reciprocal effects of trees and geomorphic processes
on each other, and in the latter case raise the possibility of coevolution
(Phillips, 2016b). Binkley and Giardina (1998) specifically related tree
root influences on soil andwater chemistry, surface erosion and deposi-
tion, and soil mixing and bioturbation to various levels of interaction,
from indirect one-way influences to coevolution.

As discussed above, tree roots have substantial impact on
weathering and regolith formation, some of which result in conversion
of bedrock to regolith, or local deepening/thickening of regolith. These
effects include

1. penetration of joints, fractures, and bedding planes (hereafter just
joints, for brevity) in both weathered and unweathered bedrock;

2. roots in rock joints facilitate chemical weathering via moisture flux
along roots and root channels, root and rhizosphere respiration, for-
mation of organic acids, and hosting of microbial and other biotic
activity;

3. radial pressure of root growthwidens joints, andmaintains biological
contact with the interior joint surfaces;

4. adhesion of roots to rock via root hairs and mycorrhizae and the
encompassing of rock fragments by roots allows for loosening of
joint blocks during tree shaking by wind, and bedrock “mining” by
tree uprooting.

These deepening effects can be considered biogeomorphic ecosys-
tem engineering because they increase the habitat size and suitability
for trees and other organisms that require or benefit from thicker soil.
Root–rock interactions are only beginning to be understood from geo-
morphological and hydrological perspectives. However, in general,
roots grow into or through fractured rock to access water, and in some
cases, there appear to be ecological advantages to the plant strategy of

Image of Fig. 5
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accessing rock fissures relative to soil (Schwinning, 2010). Trees vary
greatly in their general root architecture, typical rooting depths, and
phenotypic plasticity in adapting to different substrate conditions
(Stone and Kalisz, 1991). Soil deepening is probably followed by releas-
ing of relationship between local soil depth and individual tree species
occurrence.

Soil and regolith thickness is an important factor in habitat suitabil-
ity for deep-rooted plants and a number of soil fauna. There is therefore
evidence of positive feedback between local soil deepening by trees and
reoccupation of these locally deeper patches after tree mortality
(Phillips, 2008, 2009a; Shouse and Phillips, accepted for publication).
In karst landscapes, weathering-related feedback relationships linked
to ecosystem engineering by tree roots are described by Crowther
Fig. 6. Themain paleobotanical events considering the evolution of plants and plant roots (auth
Edwards, 2001; Stein et al., 2012; Kenrick and Strullu-Derrien, 2014). Imaginations of rhizoids
(1987), Sustersic et al. (2009), Schwinning (2010), Estrada-Medina
et al. (2013), and Nie et al. (2014). In general, these involve
geomorphically controlled or influenced edaphic effects
(e.g., topography, microclimate, substrate) on vegetation. These result
in varying vegetation patterns in relation to karst landforms, and these
differing plant communities (and associated microbial communities)
result in differential dissolution,which feeds back to the landforms. Eco-
system engineering by trees, particularly with respect to weathering
and regolith deepening, is discussed in the context of niche construction
and related concepts by Binkley and Giardina (1998), Phillips (2009a, b,
2015, 2016b), and Verboom and Pate (2013). In general, these studies
suggest that biogeomorphic ecosystemengineering by trees is common.
Niche construction is more difficult to prove, but there are clear
ors' compilations based on Kenrick and Crane, 1997; Algeo and Scheckler, 1998; Raven and
, rhizomes and roots taken from Brundrett (2002).

Image of Fig. 6


Fig. 7. Potential local biomechanical effects of growing tree roots on bedrock (from
Bunnett, 1965).
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examples in some cases. Coevolution and extended composite pheno-
types associated with tree–soil–landform interactions is even more dif-
ficult to prove, but strong circumstantial evidence exists. Despite the
limited evidence for taxa-specific eco-evolutionary dynamics, general
evidence of coevolution of vascular plants, trees, and forests on the
one hand, and regoliths on the other, is clear, as outlined in the next
section.

6. Tree roots and global environmental changes

6.1. Early evolution of terrestrial plant roots

The land plants (embryophytes) may have originated in the Middle
Ordovician 470–450 Ma, but these were small, non-vascular, and mor-
phologically undifferentiated in terms of their roots, stems, and leaves
(Kenrick and Crane, 1997; Algeo and Scheckler, 1998; Kenrick and
Strullu-Derrien, 2014). The evolution of roots, as organs of different an-
atomical structure, physiological functions and tropism (gravitropism)
than shoots, followed the advance of vascular plants in the Late Silurian
and Early Devonian, but was delayed by 15 million years (during the
Pragian 411–408 Ma, Algeo and Scheckler (1998), or Emsian 408–
393 Ma; Raven and Edwards, 2001) after the first appearance of tra-
cheophytes (vascular plants) (Retallack, 2001; Raven and Edwards,
2001). The phylogenetic context of terrestrialization during Paleozoic
times was described by Gerrienne et al. (2016). Roots probably evolved
from rhizomes (subterranean stems) of vascular plants in the Early De-
vonian and root hairs may have developed from rhizoids of early plants
to improve plant soil connectivity and nutrientflow (Kenrick and Crane,
1997; Brundrett, 2002). Underground rhizome systems developed in
response to different environmental requirements to optimize nutrient
uptake, allow mycorrhizal fungi coevolution, and provide mechanical
support for plant stability. In more advanced stages, some rhizomes be-
came thinner and longer to provide better connectivity with soil mass
and increase absorption of solutes (Brundrett, 2002). Similar needs
were probably supported by symbiotic mycorrhizal fungi evolving
since the Middle Ordovician 460–450 Ma (Kenrick and Strullu-
Derrien, 2014). The early roots were short (b20 cm in the Eifelian–
Givetian, 393–383 Ma; but see also Elick et al. (1998) for the evidence
of roots nearly 1 m deep from the Emsian stage 408–393 Ma) but ex-
tended to 80–100 cm in the Frasnian–Famennian stage 383–360 Ma
(Algeo and Scheckler, 1998). The expanding root sizes were commonly
correlated with changes in weathering rates and processes (Algeo et al.,
1995; Algeo and Scheckler, 1998).

6.2. The rise of trees and global environmental changes

We have no doubt trees are a key component of the global environ-
ment. They modulate global greenhouse effects, control water cycling,
and strongly influence erosion and accumulation (e.g. Allen et al.,
2010; Neill et al., 2005). Additionally, from the present perspective,
tree roots are most frequently seen as a factor of soil stabilization.
Those functions of trees have been acknowledged for decades. However,
on a global scale, processes attributed to land plant roots are increasing-
ly viewed as a key driving factor of climate change since the Devonian
(Le Hir et al., 2011; Doughty et al., 2014). Prior to the Devonian, the
soils, if developed at all, were probably shallow, originated by soil mi-
crobes (Retallack, 2001). Trees, together with other tracheophytes,
were able to change global environments and were even considered
as a force accelerating the Late Devonian mass extinction (Algeo et al.,
1995). The so-called “Devonian plant hypothesis” (Algeo et al., 1995;
Algeo and Scheckler, 1998) has been builtmainly on themost important
attributes of trees, i.e. growth of deep root systems and physical and
chemical changes taking place in their root zone, accelerating
weathering processes, atmospheric carbon binding in soils and climate
cooling (Algeo and Scheckler, 1998; Beerling and Berner, 2005).
It is commonly acknowledged that vascular plants, andmost impor-
tantly deep-rooted trees, enhanced silicate mineral weathering, lower-
ing of atmospheric CO2, and global climate changes in the Devonian
(Algeo and Scheckler, 1998; Berner, 1998; Algeo et al., 2001; Goudie
and Viles, 2012). The Devonian period was a time of evolution, diversi-
fication, and spatial redistribution of vascular plants, and treesmay have
performed a key role in these changes. As vascular plants developed
root-like structures and, later, true root systems, allowed plant stabiliza-
tion, and enhanced their ability to extract moisture and nutrients from
the soil and regolith. Erwin (2008) argues that the gradual evolution
of root systems and organisms themselves has been accompanied by in-
creasing role of ecosystem engineering in terrestrial systems since the
early Phanerozoic times. Positive feedbacks through environmentally
arranged selection have affectedmacroevolutionary patterns and diver-
sity. They have not only persisted but even reinforced over geologic
time.

From the evolutionary perspective, a key phase was development of
vascular tissue; water-conducting cells (tracheids) in the Late Silurian
to Early Devonian (Kenrick and Crane, 1997), and secondary tissues
(wood and phloem, between the Pragian and the Givetian) which
allowed arborescence (tree-sized stature) (Algeo and Scheckler, 1998)
(Fig. 6). Trees evolved independently in several major groups (Kenrick
and Crane, 1997) by the Middle Devonian 398–385 Ma (Stein et al.,
2012), and wider distribution of tree-sized plants was possible after
they developed the seed habit in the Famennian, between 372 and
360 Ma (Algeo et al., 1995, 2001). By the end of the Devonian, stem di-
ameter of tree-like plants increased logarithmically from 3mm to 1.5m
and their height from a few cm up to ≈30 m in the Givetian 388–
383 Ma (Algeo and Scheckler, 1998; Algeo et al., 2001; Beerling and
Berner, 2005).

Rooting depth is positively correlated with the tree size and this led
to the conclusion that larger vascular plants through their roots systems
weremore effective in soil production (Algeo and Scheckler, 1998). This
assumption supports consideration of trees as a key factor of changes in
the Devonian (but see Goddéris et al., 2014, for additional explanation).

Millions of years of evolution ofmicrobes and lower plants undoubt-
edly had significant influence on rock weathering processes. Without a
soil mantle, even immature, thin, and chemically only weakly altered,
rhizospheric processes could be only minimally active, and the role of
soil as an important medium of plant development is thought to be a
key factor of global changes (Retallack, 1997; Amundson et al., 2015).
However, pre-Devonian proto-soils are thought to be formed bymicro-
bial communities with minimal or without active role of early roots
(Algeo and Scheckler, 1998; Retallack, 2001) and the early land plants
with shallow anchorage systems (if any) may have been far less effec-
tive (N10-fold) in mineral weathering than trees which evolved later

Image of Fig. 7


Fig. 8. Conceptual model of tors development under tree cover (from Gams, 1966, see also Pitty, 1971).
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(Quirk et al., 2015). Retallack (1997) argued that at the end of the Silu-
rian rhizosphere were “impressively dense and deep.” In the light of the
present results (see Sections 3.3 and 4.2), we cannot neglect the ability
of rhizospheric processes to chemically change minerals and rocks. The
same applies to mycorrhizal fungi but with two important differences.
First, mycorrhizas (mycorrhizosphere) have a wider spatial redistribu-
tion than rhizospheres, and second, they appeared much earlier, in the
Ordovician (AM fungi) (Brundrett, 2002).

Deep-rooted trees and their rhizospheres lead to the following ef-
fects (Lambers et al., 2009):
Fig. 9. Rock cliff development under biomechanical impact of gro
1. mechanical deterioration of rocks and subsequent changes in water
cycle;

2. carbon input into regolith, soil horizon development, and positive in-
fluence on microorganisms in the rhizosphere;

3. chemical changes in the rhizosphere, e.g. pH lowering due to cation
uptake by roots (Doughty et al., 2014); “rhizoturbations” sensu
Algeo and Scheckler (1998).

Many authors attribute more effective chemical weathering to my-
corrhizal fungi (Pagani et al., 2009; Doughty et al., 2014; Morris et al.,
wing tree roots (modified after Jackson and Sheldon, 1949).

Image of Fig. 9
Image of Fig. 8
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2015; Quirk et al., 2015).They also point to mechanical breakdown of
minerals, creating more surface for chemical action (mineral
dissolution).

Also, on the global scale, intensive chemical weathering on lands
would lead to much greater nutrient loads of rivers that could enhance
marine production and led to anoxic events in the Late Devonian (Algeo
and Scheckler, 1998; Taylor et al., 2009).

6.3. Root–bedrock interactions and landscape evolution

There is a positive feedback between soil and regolith stabilization
caused by plants and weathering processes induced by their roots. Veg-
etation is an important factor in the theory of soil science and hillslope
and fluvial geomorphology (e.g. Schaetzl and Thompson, 2015). Tree
roots, because of their various functions described in the previous sec-
tions, may modulate local and regional relief when appropriate spatial
and temporal scale is reached. For instance, soil stabilization function
was a key surficial effect by the Devonian, when a shift from sheet-
braided style rivers to meandering rivers may have been a consequence
of the important innovation by plants of deep root systems (Davies and
Gibling, 2010). In river valleys, they caused valley-sides and river bank
stabilization, but after colonizing uplands, the primary effect of vascular
Fig. 10. Examples of biomechanical effects of tree roots (all photographs: authors): 1A and 1
occidentalis); 2A and2C—European beech (Fagus sylvatica), limestone; 2B—Europeanhornbeam
spruce (Picea abies), sandstone.
plants was biomechanical and biochemical weathering of bedrock; the
assumption underpinning the Devonian plant hypothesis.

Modification of landscapes takes place through secular processes of
soil production under tree cover, with bioturbations and lateral soil
and regolith transport in a form of tree uprooting frequently engaged
(Gabet and Mudd, 2010; Roering et al., 2010). During uprooting, trees
are able to uplift in their root systems even larger fragments of fractured
bedrock (Phillips et al., 2008b; Pawlik et al., 2013), and Lutz (1960) ob-
served movement of rock fragments of 4 tons due to tree throw. This is
an additional mechanism of biomechanical weathering and
biotransport that is commonly not taken into account in general state-
ments about soil production in the past. Other biomechanical processes
associatedwith vegetation as an important geomorphic factorwere also
frequently omitted in theories of landscape evolution (Johnson, 2002;
Phillips, 2009b). These are not gradual effects operating over millennial
timescales, but sudden changes of forest floor microtopography (for in-
stance, effects of tree uprooting). The process which takes a moment
can leave microtopographical imprints in the form of pit-and-mound
microrelief which may last for several thousand years (Šamonil et al.,
2013). Longevity of tree throw pit-mound microtopography as well as
erosional effects of uprooting processes are highly dependent on soil
texture.We can generally conclude that the increasing amount of coarse
B—chinkapin oak (Quercus muehlenbergii), limestone; 1C—American sycamore (Platanus
(Carpinus betulus), shale; 3A and 3C—Norway spruce (Picea abies), mudstone; 3B—Norway

Image of Fig. 10


Fig. 12. Uprooted tree with bricks in a root plate. The tree was growing on the wall of an
abandoned old house in theTableMts., SWPoland. Duringuprooting event, it causeddam-
age of the wall. (Photo: Ł. Pawlik).

Fig. 11. Angkor Temple in Cambodia overgrown by large trees of Ficus sp. (upper photographs were taken in 2012 by Sigita Sabaliauskaite, lower photographs were taken in 2004 by Vít
Zoufalý; all photographs are used with permission of the Authors).
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sand and gravels in soils promotes longevity of these features and de-
creases their erosional potential (Šamonil et al., 2010, 2016).

Direct fracturing of bedrock by growing tree roots has been postulat-
ed in the past and accompanied by descriptive figures and impressive
pictures of split rocks (Fig. 7). However, in such assumptions, at least
two facts have to be considered: 1) roots tend to concentrate into top
soil horizon, 2) biochemical processes probably act first and after that
available space is occupied by enlarging tree roots.

An interesting example of long-term landscape evolution comes
from theDinaric andAlpine karst area of Slovenia (Gams, 1966). The au-
thor foundhigher rates of dissolution of carbonate substrate under trees
and this caused spatial differentiation of tors development, first in sub-
terranean conditions, under soil mantle, and lately, when soil cover was
removed, as subaerial forms (Fig. 8) (see also Pitty, 1971, for explana-
tion). Somewhat similar positive feedback has been found in Northern
Limestone Alps, in Austria, but as an effect of another process. In this
study area, tree uprooting event was followed by intensified dissolution
within tree throw pit on limestone leading to surprising enlargement
(deepening and widening) of this post-disturbance microtopographical
form (Embleton-Hamann, 2004).

Another example of slow changes in rock properties caused by roots
comes from volcanic rocks of arid Baha California, Mexico, colonized by
different species of cacti (Bashan et al., 2002). The authors argued that
plants in such extreme arid conditions were able to enhanced soil pro-
duction by breaking up small and large rocks within the time period
of several years. However, also in this case, the process of mechanical
deterioration of rocks was not exhaustively documented and evidently
physical changes were accompanied by biochemical action taking
place in the root zones of cacti and a wild fig tree (Puente et al., 2004).

Jackson and Sheldon (1949)were probably thefirst researcherswho
pointed to an importance of mechanical action of tree roots and its con-
tribution to limestone cliff recession (Fig. 9). However, they did not con-
sider the impact of this process in a wider landscape scale. When
extrapolated on a regional scale, we hypothesize that the process of bio-
mechanical fracturing of rock fragments from the cliff face can be signif-
icant and play primary role in cliff development. We do not know other
studies, except Jackson and Sheldon (1949) contribution, to support the
hypothesis; however, our own observations from Arkansas and Ken-
tucky (USA), Carpathians and Sumava Mts. (both in the Czech
Republic) and Sudetes and Gorce Mts. (Poland) prove that biomechan-
ical weathering of rock walls caused by tree roots should be taken into
account in geomorphic analysis of weathering and landscape evolution
(Fig. 10).

Image of Fig. 12
Image of Fig. 11
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7. Biodeterioration—Invasive roots anddamage caused to infrastruc-
ture and buildings

Much basic information on tree roots behavior and their ability to
weather bedrock can be drawn from their observations in artificial envi-
ronments. Tree roots frequently damage urban underground infrastruc-
ture or historical buildings (e.g. Caneva et al., 2009). This is called
biodeterioration, i.e., the process of biotic attack when an undesirable
change in the properties of a material is caused by the activity of organ-
isms (Hueck, 1968; after Yatsu, 1988, p. 348). This definition applies also
to other organisms.

Numerous examples from around the world bring evidence of seri-
ous damage caused by tree roots with the most striking examples of
Angkor Temple in Cambodia and many others (Fig. 11).

The most important biomechanical effects caused by roots in the
built environment include (Perry, 1982; Almeida et al., 1994; Kumar
and Kumar, 1999; Allsopp et al., 2004)

1. growth and radial thickening of roots along existing weak zones be-
tween blocks and bricks (Fig. 12);

2. in clay soils roots may decrease moisture and cause soil shrinkage
leading to damage to the foundation of nearby buildings;

3. roots may penetrate and block drains and water supply pipes.

8. Conceptual model of tree roots interactions with rocks and
regolith

Living functions of tree roots and their evidently opportunistic be-
havior, which supports tree growth and species long-term existence
Fig. 13. Conceptualmodel of biological weathering caused by tree roots and its direct and indire
sensu lato.
even in the most unhospitable environment or after a severe distur-
bance, have geomorphic significance at spatio-temporal scales from
mineral to biosphere. Conversely, geomorphic processes (hillslope in-
stability, erosion, massmovements) canmodulate tree and root growth
or influence development of new tree stems and roots. Tree roots influ-
ence biological weathering in a complex way, thus we propose a con-
ceptual model encompassing major agents of this fundamental
geomorphic process. In general, the model indicates that tree roots
through their growth, activity, and persistence directly and indirectly
influence biologicalweathering, playing a significant part in soil produc-
tion and landscape denudation (Fig. 13).

9. Conclusions, knowledge gaps, and future studies

Biological weathering by tree roots, themain subject of this paper, is
considered as a set of cascading processes with changing direct and in-
direct effects along a life cycle of vascular and non-vascular roots and
rhizoids, accompanied by rhizospheric processes and mycorrhizal asso-
ciations. Tree roots are an important element of biogeomorphic systems
and their paleogeographical meaning has been widely recognized and
incorporated in the Devonian plant hypothesis. However, a full apprecia-
tion of geomorphic processes associated with tree roots is still
constrained by the lack of their thorough understanding and, in conse-
quence, cannot be fully incorporated into models of different geomor-
phic systems and soil evolution. While biological and ecological
functions of tree roots have been exhaustively studied and their theory
applied in other closely related analyses, the functions of tree roots have
been rarely recognized in geomorphic studies, and normally limited to
the two fundamental effects: hillslope and river bank stabilization, and
ct effects on soil production and denudation. Dashed arrows indicate biological weathering

Image of Fig. 13


157Ł Pawlik et al. / Earth-Science Reviews 159 (2016) 142–159
protection against erosion. Increasingly, tree uprooting has been well
studied and incorporated in the theory of soil evolution and
biogeomorphic studies. However, this is not the only process induced
by tree roots and there exist several issues which need research atten-
tion. These include

1. effectiveness and rates of biomechanical weathering (rock fracturing
and root wedging) of bedrock of different geologic substrates caused
by different tree species;

2. soil displacement by growing tree roots and its importance for soil
biotransport and sedimentflux in a short- and long-termperspective
not only on local scale but also on scale of the landscape;

3. timeframes and effectiveness of biochemical weathering in the rhi-
zosphere andmycorrhizosphere andmost importantly a significance
of this process for geomorphology, biogeomorphology, and eco-
evolution dynamics;

4. further studies on tree uprooting in different environmental condi-
tions and vegetation types or even biomes (the relevant studies are
nearly absent from tropical forests);

5. further studies on root development, decay, and root stump infilling
in different environmental conditions;

6. recognition of tree root disturbances and their influences as ecosys-
tem engineering;

7. taxa-specific studies of biogeomorphic effects;
8. changes in structure of mutual tree–soil interactions due to human

interventions in the landscape; and
9. the role of other organisms, particularly fungi and bacteria in tree–

soil interactions and ecosystem engineering by trees.
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